Разделение спектра поглощения культуры Porphyridium purpureum (Bory) Ross. в красной области
Чернышев Д.Н.1, Клочкова В.С. 1, Лелеков А.С.2 Dmitriy N. Chernyshev, Viktoria S. Klochkova, Alexander S. Lelekov
1Севастопольский государственный университет (Севастополь, Россия)
УДК 579.017:57.033
Проведена математическая декомпозиция спектра поглощения культуры красной микроводоросли Porphyridium purpureum (Bory) Ross, в области спектра от 550 до 750 нм. Спектры культуры фиксировались на спектрофотометре с интегрирующей сферой. Используя литературные данные составлены математические модели спектров поглощения следующих пигментов: B-фикоэритрина, R-фикоцианина, аллофикоцианина и хлорофилла а. Математическая модель каждого пигмента представляла сумму кривых Гаусса. Полученные уравнения были взяты за основу при моделировании нативного спектра. Составлена общая модель спектра поглощения культуры в области 550–750 нм, состоящая из суммы отдельных пигментов. Используя полученную модель на практике возможно определить концентрации хлорофилла а, и отдельных фикобилиновых пигментов непосредственно по спектру поглощения культуры. Ключевые слова: микроводоросли; спектры поглощения; фикобилины; хлорофилл а; математическое моделирование; кривые Гаусса
Введение Культуры микроводорослей и цианопрокариот являются модельными объектами в гидробиологических, экологических и других исследованиях. При использовании концентрированных питательных сред (Zarrouk, 1966; Терсков, Тренкеншу, Белянин, 1979; Семененко, 1991) оптическая плотность культуры достигает нескольких единиц, при этом концентрация клеток превышает 108 кл./мл. На сегодняшний день остаются нерешёнными вопросы влияния света на скорость роста плотных культур микроводорослей и продукцию основных биохимических составляющих. Световые условия, в которых находятся клетки, оказывают влияние на собственно фотосинтез (Macintyre et al., 2002), скорость ассимиляции основных биогенных элементов питательной среды (Пронина, 2000; Dyhrman, 2016; Sanz-Luque et al., 2015), направленность клеточного биосинтеза (Solovchenko et al., 2015). Для выяснения количественных закономерностей влияния света на скорость и эффективность фотобиосинтеза для культур микроводорослей разработаны различные теоретические подходы (Monod, 1949; Flynn, 2001; Nisbet et al., 2012; Лелеков, Тренкеншу, 2021). Независимо от базовых предположений и гипотез, на которых строится моделирование роста культуры, конечным критерием адекватности математической модели традиционно является её соответствие реальным экспериментальным данным. Однако, определение концентрации основных макромолекулярных компонентов биомассы микроводорослей методически сложная задача, как на практике, так и в теории (Копытов и др., 2015). Поэтому на сегодняшний день актуальна разработка экспресс методов определения содержания белков, углеводов, липидов, пигментов в клетках микроводорослей. Нативный спектр поглощения культуры несёт в себе информацию о количественном и качественном пигментном составе водорослей. Однако для получения такой информации необходима математическая обработка спектров (Чернышев, Клочкова, 2021). Учёт поглощения света культурой микроводорослей осложняется вкладом рассеяния, возникающими из-за того, что размеры клеток в суспензиях значительно больше, чем длина волны видимого света и неоднородным распределением пигментов в клетке. Значительно устранить рассеяние света удаётся, используя интегрирующую сферу. Образец помещается в сферу, внутренняя поверхность которой хорошо отражает свет. Весь рассеянный свет попадает на фотодетектор, так что измеряемая оптическая плотность обусловлена только истинным поглощением образца. Помимо инструментальных способов учёта светорассеяния используют поправочные коэффициенты, помогающие рассчитать истинный спектр поглощения, компенсированный на рассеяние. По методике (Merzlyak, Naqvi, 2000), если регистрировать спектры поглощения образца на разном расстоянии от интегрирующей сферы, то можно изменять вклад светорассеяния: чем ближе образец к интегрирующей сфере, тем больше рассеянного света попадает на фотодетектор и оптическая плотность образца становится меньше. Согласно (Клочкова и др., 2021) истинный спектр поглощения, компенсированный на рассеяние, определяется по формуле: где D(λ;r) – оптическая плотность образца, расположенного на некотором расстоянии r от ИС; Предполагается, что поправочный коэффициент ослабления света Lосл-е(r;0) не зависит от длины волны и его значение может быть определено, перейдя в область длин волн, в которой образец не поглощает (т. е. к области 750 – 800 нм видимого диапазона): Одним из решений проблемы идентификации и разделения пигментов является декомпозиция нативного спектра математическими методами. Оптическая плотность аддитивная величина, поэтому общий спектр поглощения представляет собой сумму спектров отдельных пигментов. Спектры пигментов состоят из нескольких максимумов, форма и положение которых определяется хромофорными группами. Поглощение хромофорной группы, относительно максимума, распределено симметрично. Это свойство позволяет описать спектр пигмента одной или несколькими кривыми Гаусса (Kupper, Seibert, Parameswaran, 2007). В настоящей работе выполнен анализ и разделение перекрывающихся полос в нативном спектре поглощения культуры Porphyridium purpureum.
Материал и методы В качестве объекта исследования использовали культуру красной морской водоросли Porphyridium purpureum (Bory.) Ross, полученную из коллекции ФИЦ Института биологии южных морей имени А.О. Ковалевского РАН, г. Севастополь. P. purpureum выращивали в унифицированной лабораторной установке (Тренкеншу и др., 2017) на питательной среде (Терсков, Тренкеншу, Белянин, 1979) в условиях накопительной культуры. Использовался плоскопараллельный фотобиореактор толщиной 2 см, площадь рабочей поверхности 0,05 м2, объёмом 1 л. В опытах в качестве источника освещения использовали холодные люминесцентные лампы Philips Daylight TL-D 54-765 6G мощностью 18 Вт. Средняя освещённость рабочей поверхности составляла 5 клк. Температура суспензии поддерживалась на уровне 28±1°С. Оптическую плотность культуры определяли на фотометре КФК-2 при длине волны 750 нм, при пересчёте единиц оптической плотности на сухую биомассу (СВ) использовали ранее определённый эмпирический коэффициент 1,4. Спектры поглощения регистрировались в диапазоне от 400 до 800 нм с шагом 0,5 нм на двухлучевом спектрофотометре Lambda 365 Double Beam UV-Visible (производитель: Perkin Elmer, Индия), который оснащён интегрирующей сферой (ИС) диаметром 60 мм (внешнее покрытие – BaSO4).
Результаты и обсуждение Фикобилиновые пигменты Porphyridium purpureum представлены следующими пигментами: В-фикоэритрин, R-фикоцианин и аллофикоцианин. На спектре поглощения они представлены пиками 545, 615 и 650 нм соответственно. В процентном соотношении массы пигментов P. purpureum составляет следующие: В-ФЭ : R-ФЦ : АФЦ – 85 : 10 : 5 (Гудвилович, Боровков, 2014). Так же в состав пигментов Porphyridium purpureum входят каротиноиды (пики в диапазоне 400–550 нм) (Kopecky, Riederer, Pfundel, 2002) и хлорофилл а (440 и 680 нм) (Гудвилович, Боровков, 2014). В настоящее время нет однозначного ответа на вопрос о наличии у всех красных водорослей (Rhodophyta) хлорофилла d, поскольку была найдена прокариотическая водоросль Acaryochloris marina, содержащая данный пигмент и обитающая на некоторых красных морских водорослях (Онойко, 2010). На первом этапе декомпозиции спектра поглощения удобно рассматривать красную (550–750 нм) область, где влиянием каротиноидов можно пренебречь. На основе литературных данных (Glazer, Bryant, 1975; Glazer, Hixson, 1977) о спектрах поглощения фикобилинов (В-ФЭ, R-ФЦ, АФЦ) в чистом виде, построены их математические модели, которые представлены на рис. 1. За основу для моделирования нативной формы хлорофилла а был взят спектр хлорофилла а in vivo, полученный методом микроспектроскопии (Barsanti, 2007). Также построена математическая модель хлорофилла а. На рис. 2 модель хлорофилла а представляет собой сумму трех кривых Гаусса. Данные кривые представленны по отдельности (1, 2, 3), а также в сумме (4). Для упрощения расчёта оптическая плотность в максимуме поглощения была приведена к 1. Модель представляет сумму кривых Гаусса, где каждый отдельный пик описан выражением (1): где D(λ) – оптическая плотность, отн. ед; Dmax – амплитуда пика, отн. ед; λi – длина волны, нм; λмах – положение максимума пика, нм; σ – полуширина пика, нм.
Рис. 1. Математическая модель спектра фикоэритрина (А), R-фикоцианина (В) и аллофикоцианина (С). Цифрами отмечены номера отдельных пиков Fig. 1. Mathematical model of phycoerythrin (А), R-phycocyanin (В), alloficocyanin (С) spectrum. The numbers indicate the numbers of individual peaks Рис. 2. Математическая модель спектра поглощения хлорофилла а, построенная на основе литературных данных Fig. 2. Mathematical model of the absorption spectrum of chlorophyll a, built on the basis of literature data
Полученные на начальном этапе модели пигментов были применены для аппроксимации спектра поглощения культуры. В результате были вычислены следующие значения параметров моделей нативных пигментов (значения оптической плотности в максимуме приведены к 1). Модель фикоэритрина была упрощена с четырех до трех отдельных кривых Гаусса за счет слияния 3 и 4 пиков. В результате анализа 9 спектров поглощения культуры, компенсированных на рассеяние, разработана модель спектра поглощения нативной культуры P. purpureum (2). Аппроксимация проводилась методом доверительных областей с заданными ограничениями и начальными параметрами. Коэффициент детерминации R2 между экспериментальными и реконструированными спектрами составлял от 0,98 до 0,99. Пример разделения спектра представлен на рис. 3. Общий спектр культуры в красной области будет представляет сумму спектров хлорофилла а и фикобилинов. В данной модели четыре неизвестных величины – концентрации хлорофилла а, В-фикоэритрина, R-фикоцианина и аллофикоцианина.
На основании полученных данных разработана модель спектра поглощения нативной культуры P. purpureum (2). Общий спектр культуры в красной области будет представляет сумму спектров хлорофилла а и фикобилинов. В данной модели четыре неизвестных величины – концентрации хлорофилла а, В-фикоэритрина, R-фикоцианина и аллофикоцианина.
где D(λ) – общая оптическая плотность, отн. ед; DBPE(λ) – оптическая плотность В-фикоэритрина; DRPC(λ) – оптическая плотность R-фикоцианина; DAPC(λ) – оптическая плотность аллофикоцианина; DCHLA – оптическая плотность хлорофилла а; CBPE – концентрация В-фикоэритрина (г/л); CRPC – концентрация R-фикоцианина (г/л); CAPC – концентрация аллофикоцианина (г/л); CCHLA – концентрация хлорофилла а (г/л); εBPE – экстинкция В-фикоэритрина 10 (л·г-1·см-1); εRPC – экстинкция R-фикоцианина 7 (л·г-1·см-1); εAPC – экстинкция аллофикоцианина 5,8 (л·г-1·см-1); εCHLA – экстинкция хлорофилла а 88,15 (л·г-1·см-1). Для определения концентрации (г/л, или мг/мл) пигментов P. purpureum необходимо разделить значение оптической плотности, например, хлорофилла а (D678Хла), на коэффициент экстинкции ((мг/мл)-1·см-1 или л·г-1·см-1). Заметим, что чем больше значение коэффициента экстинкции, тем меньше получится значение концентрации. В монографии (Стадничук, 1990) приводятся следующие коэффициенты экстинкции водных растворов фикобилиновых пигментов: B-фикоэритрина – (макс. поглощения 545 нм) 10,0 (мг/мл)-1·см-1; R-фикоцианин (615 нм) 7,0 (мг/мл)-1·см-1; Аллофикоцианин (650 нм) 5.8 (мг/мл)-1·см-1. Коэффициент экстинкции хлорофилла а в ацетоновом экстракте по эталонным справочным данным составляет 88,15 л·г-1·см-1 (Jeffrey, Mantoura, Wright, 1997). В работе (Myers, Graham, Wang, 1978) по нативным спектрам поглощения и экстракту хлорофилла в ацетоне расчитан коэффициент экстинкции хлорофилла а в нативной форме равный 76 (мг/мл)-1·см-1. По данным (Arnon, 1974) нативный коэффициент экстинкции хлорофилла а составляет 67,5 (мг/мл)-1·см-1 в максимуме поглощения 678 нм и 17,3 на 620 нм. То есть, соотношение высоты пиков хлорофилла а 678/620 составляет приблизительно 4 к 1. Одним из объяснений различия между коэффициентами экстинкции хлорофилла в нативном состоянии и в ацетоновом растворе является эффект «упаковки» пигментов в клетках и самозатенение. При использовании коэффициента экстинкции 88 л·г-1·см-1 рассчитанная концентрация хлорофилла а не будет учитывать «самозатенные» и упакованные молекулы хл а. Концентрации хлорофилла а, рассчитанные с использованием эталонного (Jeffrey, Mantoura, Wright, 1997) и нативного (Myers, Graham, Wang, 1978) коэффициентов экстинкции отличаются на 16%. На рис. 3 представлена верификация модели, а именно сравнение нативного спектра поглощения культуры P. purpureum с расчётными спектрами моделей пигментов для красной области спектра.
Рис. 3. Декомпозиция спектра поглощения культуры микроводоросли Porphyridium purpureum на отдельные спектры пигментов Fig. 3. Decomposition of the absorption spectrum of Porphyridium purpureum microalgae culture into individual pigment spectra
Анализируя результат декомпозиции спектра (рис. 3), можно заметить, что аллофикоцианин в красной области вносит незначительный вклад в общий спектр поглощения культуры P. purpureum. Это объясняется тем, что АФЦ, по сравнению с другими фикобилиновыми пигментами имеет меньший процент массы пигментов. Поскольку в точке максимума хлорофилла а (678 нм) другие пигменты (В-ФЭ, R-ФЦ, АФЦ) не вносят существенный вклад, то можно использовать значение оптической плотности в данной точке для вычисления концентрации хлорофилла а, разделив данное значение на величину экстинкции хлорофилла а – 88,15 (л г-1·см-1).
Заключение Полученная модель спектра поглощения культуры может быть использована в качестве экспресс-метода определения концентраций пигментов. Из-за того, что концентрация АФЦ небольшая и его вклад в общий спектр незначительный, то данным пигментом при моделировании можно пренебречь. Также в области 680 нм вклад в спектр вносит только хлорофилл а, поэтому данную точку в спектре можно использовать непосредственно для вычисления концентрации хл а.
Работа выполнена в рамках Госзадания ФИЦ «Институт биологии южных морей имени А. О. Ковалевского РАН», № гос. регистрации 121030300149-0. Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данном сообщении.
Список литературы
Статья поступила в редакцию 10.02.2022
Об авторах Чернышев Дмитрий Николаевич – Dmitriy N. Chernyshev заведующий лабораторией, Севастопольский государственный университет, Севастополь, Россия (Sevastopol State University, Sevastopol, Russia); кафедра «Физика» chernishevd@gmail.com Клочкова Виктория Сергеевна – Viktoriya S. Klochkova студент, Севастопольский государственный университет, Севастополь, Россия Sevastopol State University, Sevastopol, Russia); кафедра «Физика» viki-iki@mail.ru Лелеков Александр Сергеевич – Alexander S. Lelekov кандидат биологических наук a.lelekov@yandex.ru Корреспондентский адрес: Россия, 299053, г. Севастополь, ул. Университетская, 33, СевГУ; тел. (8692)22-29-11.
ССЫЛКА: Чернышев Д.Н., Клочкова В.С., Лелеков А.С. Разделение спектра поглощения культуры Porphyridium purpureum (Bory) Ross. в красной области // Вопросы современной альгологии. 2022. №1 (28). С. 25–34. URL: http://algology.ru/1777 DOI – https://doi.org/10.33624/2311-0147-2022-1(28)-25-34 EDN – IOAUMG При перепечатке ссылка на сайт обязательна Уважаемые коллеги! Если Вы хотите получить версию статьи в формате PDF, пожалуйста, напишите в редакцию, и мы ее вам с удовольствием пришлем бесплатно.
Separation of the absorption spectrum of Porphyridium purpureum (Bory) Ross. in the red area Dmitriy N. Chernyshev1, Viktoriya S. Klochkova1, Alexander S. Lelekov2 1Sevastopol State University (Sevastopol, Russia)
Mathematical decomposition of the absorption spectrum of the culture of the red microalga Porphyridium purpureum (Bory) Ross was carried out in the spectral range from 550 to 750 nm. The culture spectra were recorded on a spectrophotometer with an integrating sphere. Using the literature data, mathematical models of the absorption spectra of the following pigments were compiled: B-phycoerythrin, R-phycocyanin, allophycocyanin and chlorophyll a. The mathematical model of each pigment represented the sum of Gaussian curves. The resulting equations were taken as a basis for modeling the native spectrum. A general model of the absorption spectrum of culture in the region of 550–750 nm has been compiled, consisting of the sum of individual pigments. Using the model obtained in practice, it is possible to determine the concentrations of chlorophyll a, and individual phycobilin pigments directly from the absorption spectrum of the culture. Key words: microalgae; absorption spectra; phycobilins; chlorophyll a; mathematical modeling; Gaussian curves
References
Authors Chernyshev Dmitriy N. ORCID – https://orcid.org/0000-0002-8120-7382 Sevastopol State University, Sevastopol, Russia chernishevd@gmail.com Klochkova Viktoriya S. ORCID – https://orcid.org/0000-0002-2120-9589 Sevastopol State University, Sevastopol, Russia viki-iki@mail.ru Lelekov Alexander S. ORCID – https://orcid.org/0000-0002-3876-3455 Kovalevsky Institute of Marine Biological Research RAS, Sevastopol, Russia a.lelekov@yandex.ru
ARTICLE LINK: Chernyshev D.N., Klochkova V.S., Lelekov A.S. Separation of the absorption spectrum of Porphyridium purpureum (Bory) Ross. in the red area. Voprosy sovremennoi algologii (Issues of modern algology). 2022. № 1 (28). P. 25–34. URL: http://algology.ru/1777 DOI – https://doi.org/10.33624/2311-0147-2022-1(28)-25-34 EDN – IOAUMG When reprinting a link to the site is required Dear colleagues! If you want to receive the version of the article in PDF format, write to the editor,please and we send it to you with pleasure for free.
На ГЛАВНУЮ
К разделу ОБЗОРЫ, СТАТЬИ И КРАТКИЕ СООБЩЕНИЯ |
|||
|
|